
二極管關(guān)斷伴隨非常大的dv/dt,因此在很大的di/dt條件 下,會(huì)產(chǎn)生很高的反向恢復(fù)電流尖峰。這些尖峰會(huì)比穩(wěn) 態(tài)開(kāi)關(guān)電流幅值大十倍以上。該大電流會(huì)使MOSFET損 耗大大增加、發(fā)熱嚴(yán)重。MOSFET結(jié)溫的升高會(huì)降低其 dv/dt的能力。在極端情況下,損壞MOSFET,使整個(gè)系 統(tǒng)失效。在特殊應(yīng)用中,負(fù)載會(huì)從空載突變到過(guò)載,為 了能夠保持系統(tǒng)可靠性,系統(tǒng)應(yīng)該能夠在更惡劣的工作 環(huán)境中運(yùn)行。
圖10和圖11給出了過(guò)載時(shí)功率MOSFET開(kāi)關(guān)波形。電流 尖峰發(fā)生在開(kāi)通和關(guān)斷的瞬間??梢员徽J(rèn)作是一種“暫 時(shí)直通”。圖12給出了過(guò)載時(shí)LLC諧振變換器的簡(jiǎn)化波 形,圖13給出了可能導(dǎo)致器件潛在失效問(wèn)題的工作模 式。
在t0 ~ t1時(shí)段,Q1導(dǎo)通,諧振電感電流Ir為正。由于 MOSFET Q1處于導(dǎo)通狀態(tài),諧振電流流過(guò)MOSFET Q1 溝道,次級(jí)二極管D1導(dǎo)通。Lm不參與諧振,Cr與Lr諧 振。能量由輸入端傳送到輸出端。
在t1 ~ t2時(shí)段,Q1門(mén)極驅(qū)動(dòng)信號(hào)開(kāi)通,Q2關(guān)斷,輸出電 流在t1時(shí)刻為零。兩個(gè)電感電流Ir 和 Im相等。次級(jí)二極 管都不導(dǎo)通,兩個(gè)輸出二極管反向偏置。能量從輸出電 容而不是輸入端往外傳輸。因?yàn)檩敵龆伺c變壓器隔離, Lm與Lr串聯(lián)參與諧振。
在t2 ~ t3時(shí)段,MOSFET Q1 依然施加門(mén)極信號(hào),Q2關(guān) 斷。在這個(gè)時(shí)段內(nèi),諧振電感電流方向改變。電流從 MOSFET Q2的源極流向漏極。D2開(kāi)始導(dǎo)通,D1反向偏 置,輸出電流開(kāi)始增加。能量回流到輸入端。
在t3 ~ t4時(shí)段,關(guān)斷MOSFET Q1和Q2的門(mén)極信號(hào),諧振 電感電流開(kāi)始流過(guò)MOSFET Q2的體二極管,這就為 MOSFET Q1創(chuàng)造了ZCS條件。
在t4 ~ t5時(shí)段,MOSFET Q2開(kāi)通,流過(guò)一個(gè)很大的直通 電流,該電流由MOSFET Q1體二極管的反向恢復(fù)電流 產(chǎn)生。這不是偶然的直通,因?yàn)楦?、低端MOSFET正常 施加了門(mén)極信號(hào);有如直通電流一樣,它會(huì)影響到該開(kāi) 關(guān)電源。這會(huì)形成很高的反向恢復(fù)dv/dt,時(shí)常會(huì)擊穿 MOSFET Q2。這樣就會(huì)導(dǎo)致MOSFET失效,當(dāng)使用的 MOSFET體二極管的反向恢復(fù)特性較差時(shí),這種失效機(jī) 理會(huì)更加嚴(yán)重。
短路失效模式
最壞情況為短路。短路時(shí),MOSFET導(dǎo)通電流非常高 (理論上無(wú)限高),頻率也會(huì)降低。當(dāng)發(fā)生短路時(shí),諧 振回路中Lm被旁路。LLC諧振變換器可以簡(jiǎn)化為由Cr和 Lr組成的諧振電路,因?yàn)镃r只與Lr發(fā)生諧振。因此圖12 省略了t1 ~ t2時(shí)段,短路時(shí)次級(jí)二極管在CCM模式下連續(xù) 導(dǎo)通。短路狀態(tài)下工作模式幾乎與過(guò)載狀態(tài)下一樣,但 是短路狀態(tài)更糟糕,因?yàn)榱鹘?jīng)開(kāi)關(guān)體二極管的反向恢復(fù) 電流更大。
圖14和圖15給出了短路時(shí)功率MOSFET的開(kāi)關(guān)波形。短 路的波形與過(guò)載下的波形類(lèi)似,但是其電流的等級(jí)更 高,MOSFET結(jié)溫度更高,更容易失效。
4 功率MOSFET失效機(jī)理
體二極管反向恢復(fù)dv/dt
二極管由通態(tài)到反向阻斷狀態(tài)的開(kāi)關(guān)過(guò)程稱(chēng)為反向恢 復(fù)。圖16給出了MOSFET體二極管反向恢復(fù)的波形。首 先體二極管正向?qū)?,持續(xù)一段時(shí)間。這個(gè)時(shí)段中,二 極管P-N結(jié)積累電荷。當(dāng)反向電壓加到二極管兩端時(shí), 釋放儲(chǔ)存的電荷,回到阻斷狀態(tài)。釋放儲(chǔ)存電荷時(shí)會(huì)出 現(xiàn)以下兩種現(xiàn)象:流過(guò)一個(gè)大的反向電流和重構(gòu)。在該 過(guò)程中,大的反向恢復(fù)電流流過(guò)MOSFET的體二極管, 是因?yàn)镸OSFET的導(dǎo)通溝道已經(jīng)切斷。一些反向恢復(fù)電 流從N+源下流過(guò)。
如圖18和圖19所示,Rb表示一個(gè)小電阻?;旧?,寄生 BJT的基極和發(fā)射極被源極金屬短路。因此,寄生BJT 不能被激活。然而實(shí)際中,這個(gè)小電阻作為基極電阻, 當(dāng)大電流流過(guò)Rb時(shí),Rb產(chǎn)生足夠的壓降使寄生BJT基極發(fā)射極正向偏置,觸發(fā)寄生BJT。一旦寄生BJT開(kāi)通, 會(huì)產(chǎn)生一個(gè)熱點(diǎn),更多的電流將涌入該點(diǎn)。負(fù)溫度系數(shù) 的BJT會(huì)使流過(guò)的電流越來(lái)越高。終導(dǎo)致器件失效。 圖17給出了體二極管反向恢復(fù)時(shí)MOSFET失效波形。電 流等級(jí)超過(guò)反向恢復(fù)電流峰值Irm時(shí)正好使器件失效。這 意味著峰值電流觸發(fā)了寄生BJT。圖20和圖21給出了由 體二極管反向恢復(fù)引起芯片失效的燒毀標(biāo)記。燒毀點(diǎn)是 芯片脆弱的點(diǎn),很容易就會(huì)形成熱點(diǎn),或者需要恢復(fù) 過(guò)多儲(chǔ)存電荷。這取決于芯片設(shè)計(jì),不同設(shè)計(jì)技術(shù)會(huì)有 所變化。
如果反向恢復(fù)過(guò)程開(kāi)始前P-N結(jié)溫度高于室溫,則更容 易形成熱點(diǎn)。所以電流等級(jí)和初始結(jié)溫度是器件失效的 兩個(gè)重要的因素。影響反向恢復(fù)電流峰值的主要因素 有溫度、正向電流和di/dt。圖22給出了反向恢復(fù)電流峰 值與正向電流等級(jí)的對(duì)應(yīng)曲線(xiàn)。如圖22所示,大限度 抑制體二極管導(dǎo)通,可以降低反向恢復(fù)電流峰值。如果 di/dt增大,反向恢復(fù)電流峰值也增大。在LLC諧振變換 器中,功率MOSFET體二極管的di/dt與另一互補(bǔ)功率開(kāi) 關(guān)的開(kāi)通速度有關(guān)。所以降低其開(kāi)通速度也可以減小 di/dt。
擊穿dv/dt
另一種失效模式是擊穿dv/dt。它是擊穿和靜態(tài)dv/dt的組 合。功率器件同時(shí)承受雪崩電流和位移電流。如果開(kāi)關(guān) 過(guò)程非???,在體二極管反向恢復(fù)過(guò)程中,漏源極電壓 可能超過(guò)大額定值。例如,在圖16中,漏源極電壓 大值超過(guò)了570V ,但器件為500V 額定電壓的 MOSFET。過(guò)高的電壓峰值使MOSFET進(jìn)入擊穿模式, 位移電流通過(guò)P-N結(jié)。這就是雪崩擊穿的機(jī)理。另外, 過(guò)高的dv/dt會(huì)影響器件的失效點(diǎn)。dv/dt越大,建立起的 位移電流就越大。位移電流疊加到雪崩電流后,器件受 到傷害,導(dǎo)致失效。基本上,導(dǎo)致失效的根本原因是大 電流、高溫度引起的寄生BJT導(dǎo)通,但主要原因是體二 極管反向恢復(fù)或擊穿。實(shí)踐中,這兩種失效模式隨機(jī)發(fā) 生,有時(shí)同時(shí)發(fā)生。
5 解決方法
在啟動(dòng)、過(guò)載或短路狀況下,過(guò)流保護(hù)方法有多種:
■增加開(kāi)關(guān)頻率
■變頻控制以及 PWM控制
■采用分裂電容和鉗位二極管
為了實(shí)現(xiàn)這些方法,LLC諧振變換器需要增加額外的器件、改進(jìn)控制電路或者重新進(jìn)行散熱設(shè)計(jì),這都增加了系統(tǒng)的成本。有一種更為簡(jiǎn)單和高性?xún)r(jià)比的方法。由于體二極管在LLC諧振變換器中扮演了很重要的角色,它對(duì)失效機(jī)理至關(guān)重要,所以集中研究器件的體二極管特性是解決這個(gè)問(wèn)題的好方法。越來(lái)越多的應(yīng)用使用內(nèi)嵌二極管作為關(guān)鍵的系統(tǒng)元件,因此體二極管的許多優(yōu)勢(shì)得以實(shí)現(xiàn)。其中,金或鉑擴(kuò)散和電子輻射是非常有效的 解決方法。這種方法可以控制載流子壽命,從而減少反 向恢復(fù)充電和反向恢復(fù)時(shí)間。隨著反向恢復(fù)充電的減 少,反向恢復(fù)電流峰值和觸發(fā)寄生BJT的可能性也隨之 降低。因此,在過(guò)流情況下,如過(guò)載或短路,這種帶有 改進(jìn)的體二極管的新功率MOSFET可以提供更耐久、更 好的保護(hù)。
聲明:本內(nèi)容為作者獨(dú)立觀點(diǎn),不代表電源網(wǎng)。本網(wǎng)站原創(chuàng)內(nèi)容,如需轉(zhuǎn)載,請(qǐng)注明出處;本網(wǎng)站轉(zhuǎn)載的內(nèi)容(文章、圖片、視頻)等資料版權(quán)歸原作者所有。如我們采用了您不宜公開(kāi)的文章或圖片,未能及時(shí)和您確認(rèn),避免給雙方造成不必要的經(jīng)濟(jì)損失,請(qǐng)電郵聯(lián)系我們,以便迅速采取適當(dāng)處理措施;歡迎投稿,郵箱∶editor@netbroad.com。
微信關(guān)注 | ||
![]() |
技術(shù)專(zhuān)題 | 更多>> | |
![]() |
技術(shù)專(zhuān)題之EMC |
![]() |
技術(shù)專(zhuān)題之PCB |